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A Visually-Grounded Speech Datasets

Table A1 displays details of the three visually-grounded speech datasets used in this paper, and
distributions of utterance duration are illustrated in Figure A1. When computing duration statistics,
we exclude utterances longer than 15s for SpokenCOCO and Flickr8k Audio, and 40s for Places
Audio, because we found that those utterances resulted from incorrect operation of the data collection
interface (e.g., workers forgot to stop recording). When computing vocabulary sizes and word
statistics, text transcripts are normalized by lower-casing all the alphabets and removing characters
that are neither alphabets nor digits.

For the SpokenCOCO data collection on Amazon Mechanical Turk, we displayed the text of a
MSCOCO caption to a user and asked them to record themselves reading the caption out loud. For
quality control, we ran a speech recognition system in the background and estimated the word-level
transcription for each recording. We computed the word error rate of the ASR output against the text
that the user was prompted to read, and only accepted the caption if the word error rate was under
30%. In the case that the word error rate was higher, the user was asked to re-record their speech. We
paid the users $0.015 per caption recorded, which in conjunction with the 20% overhead charged by
Amazon resulted in a total collection cost of $10,898.91.

Table A1: Statistics and properties of the three visually-grounded speech datasets used in the paper.

SpokenCOCO Flickr8k Audio [5] Places Audio [7]

Num. of Utterances 605495 40000 400000
Num. of Speakers 2353 183 2683
Num. of Images 123287 8000 400000
Num. of Utterances / Image 5 5 1
Utterance Duration µ 4.12s 4.33s 8.37s
Utterance Duration σ 1.31s 1.33s 4.53s
Avg. Num. of Words / Utterance 10.45 10.81 19.29
Avg. Num. of Words / Second 2.41 2.63 2.31
Total Duration 742hr 46hr 936hr
Vocabulary Size 29539 8718 41217
Type scripted scripted spontaneous

B Detailed Explanation for M-SPICE

SPICE computes an F-score between two bags of semantic propositions T (S) and T (c) parsed from
a set of references S = {si}i and a hypothesis c, where T (c) denotes a bag of propositions extracted
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Figure A1: Utterance duration histograms for the three visually-grounded speech datasets.

from a scene graph parsed c, and we can compute that for multiple sentences with T (S) = ∪i(T (si)),
and we have |T (S)| ≥ |T (si)| for all i, as captions may capture different aspects of the same image.

To extend SPICE for scoring multiple hypotheses C = {cj}Jj=1, one can compute an average
SPICE: 1

J

∑
j F1(T (S), T (cj)), or use the oracle SPICE proposed in [101]: maxjF1(T (S), T (cj)).

However, these metrics fail to capture the diversity among hypotheses. Let us now consider two
hypothesis set, C1 = {c11, c12} and C2 = {c21, c22}, where

• T (c11) = T (c12) = T (c21) = {(girl), (table), (girl, sit-at, table)}
• T (c22) = {(girl), (girl, young)}
• T (S) = {(girl), (table), (girl, young), (girl, sit-at, table)}

We would like a metric to score C2 higher than C1 because it captures diverse and correct concepts;
however, since F1 scores are the same for c11, c12, c21, and is lower for c22, the average SPICE of C1

is higher while the oracle SPICE are the same for both C1 and C2. Our proposed M-SPICE can be
formulated as F1(∪iT (si),∪jT (cj)). When hypotheses capture diverse AND correct propositions,
the M-SPICE recall should increase as shown in Figure A2 row 2. Note that the M-SPICE score and
recall will not increase if propositions are diverse but incorrect.

Figure A2: M-SPICE F-score (same as Figure 5) and recall on the SpokenCOCO test set with
different candidate proposal methods.

C Detailed Experimental Setups

In this section, we provide details about data preprocessing, model architecture, and training hyper-
parameters for each module used in this paper. The same setups are used for all unit types unless
otherwise stated.
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C.1 Image-to-Unit Model

Data Images are reshaped to 256×256×3 matrices and per-channel normalized with µ =
[0.485, 0.456, 0.406] and σ = [0.229, 0.224, 0.225]. During training, unit sequences are truncated or
padded to the target length shown in Table A2. The target lengths are determined such that there are
less than 10% sequences truncated while still allowing a reasonable batch size to be used. Units that
occurred less than five times are excluded. Sequences are not truncated during evaluation. We follow
the data splits used in [6] for Places, and [10] for Flickr8k and SpokenCOCO (commonly known as
the “Karpathy split”).

Table A2: Configuration for each type of units used in the Image-to-Unit model.

Word Char VQ3 VQ2 WVQ VQ3 \ RLE

Target Length 18 70 100 200 110 160
Sequence Truncated (%) 1.12 1.74 6.90 9.37 7.80 6.35
Batch Size (SAT) 80 60 40 40 40 40
Batch Size (SAT-FT) 32 32 20 - - -

Model We adopt an open-source re-implementation3 of Show, Attend, and Tell [17] (SAT) with soft
attention, which replaces the CNN encoder in [17] with a ResNet-101 [8] pre-trained on ImageNet [2]
for image classification. The last two layers of the ResNet are removed (a pooling layer and a
fully-connected layer) such that the encoder produces a 14× 14× 2048 feature map for each image.

Training Two model variants are considered in this paper: SAT and SAT-FT, which differ in how
each part is initialized and which parts are updated during training. The SAT model initializes the
encoder parameters with a pre-trained image classification model and freezes the encoder parameters
during training. On the other hand, the SAT-FT model (fine-tuned SAT model) initializes the entire
model with a pre-trained SAT model, and update all parameters during training. Adam [11] with
a learning rate of 10−4 is used for optimizing both models. The training objective is maximum
likelihood combined with a doubly stochastic attention regularization introduced in [17] with a weight
of 1. Dropout is applied to the input of decoder softmax layer with a probability of 0.5 during training.
Gradients are clipped at 5 for each dimension. The batch size for each unit is shown in Table A2,
which are chosen based on the target length and the GPU memory constraints. All SAT models are
trained for at most 30 epochs, and SAT-FT models are trained for at most 20 epochs. Models are
selected based on the unit BLEU-4 score on the validation set.

The time complexity of forward computation is the same for the encoder for all units, while for the
decoder it is proportional to the unit sequence length due to the auto-regressive nature. Using two
NVIDIA TITAN X Pascal GPUs with data parallel training, each epoch takes about 2.8 hours for
VQ3 units and 5.3 hours for VQ2 units.

C.2 Unit-to-Speech Model

Data Run-length encoded unit sequences are used as input for all systems (i.e., VQ3 and VQ3 \ RLE
systems share the same unit-to-speech model). The native sample rates of audio files in LJSpeech [9]
and VCTK [15] are 22050Hz and 48kHz, respectively. For consistency and compatibility with
the spectrogram-to-waveform model, we down-sample those in VCTK to 22050Hz. Following
Tacotron [16] and Tacotron2 [14], we compute a 80 dimensional Mel spectrogram for each audio file
with a 256-sample frame hop, a 1024-sample frame size, and a Hann window function. At a sample
rate of 22050Hz, it corresponds to about 11.6ms frame hop and 46.4ms frame size. Utterances longer
than 8 seconds are discarded during training to accommodate for the GPU memory constraints. We
follow the data splits provided at https://github.com/NVIDIA/tacotron2 for LJSpeech. For
the multi-speaker VCTK dataset, to ensure the same speaker distribution between train and valid
splits, we randomly sample 2.5% of the utterances from each speaker for validation, which results in
a set of 1087 utterances.

3https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning
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Model We use a cascade of two systems to convert a unit sequence into a waveform. The first part
synthesizes a Mel spectrogram from a sequence of units, which is referred to as the Unit-to-Speech
model in this paper and determines most of the properties of interest in speech (e.g., linguistic content,
speaker, prosody). The second part is a vocoder that converts a Mel spectrogram into a waveform,
which mostly affects the fidelity of the synthesized speech rather than the aforementioned properties.
A vocoder can be either a learned module like WaveNet [12] and WaveGlow [13], or a parameter-less
signal processing block such as using the Griffin-Lim algorithm [4].

We use an re-implementation4 of Tacotron2 [14] for Unit-to-Speech models, which is a sequence-to-
sequence encoder-decoder model with location-sensitive attention [1]. For single-speaker models
trained on the LJSpeech dataset, the exact same hyperparameters and model architecture are used
as [14]. For multi-speaker models trained on the VCTK dataset, we create an additional speaker
embedding table of 256 dimensions for all speakers and control the speaker identity through these
speaker embeddings. Speaker embeddings are injected at two places in the decoder: first in concate-
nation with the original input to the decoder LSTM, and second in concatenation with the output of
the decoder LSTM, right before predicting the stop token and the spectra of a frame.

A pre-trained5 WaveGlow [13] vocoder is used for all Unit-to-Speech models, which demonstrates
the universality of vocoder models and how little acoustic properties of interest are affected by them.
Although it is possible to achieve a even higher fidelity score through training or fine-tuning the
WaveGlow model on the re-synthesized spectrograms, we did not attempt to experiment with that,
since the focus of this paper is to demonstrate the capability of generating fluent spoken captions and
controlling properties like speaker identity independently.

Training A batch size of 64 are used for all systems. Adam [11] with an initial learning rate of
10−3 is used to minimize the mean square error from spectrogram prediction and the binary cross
entropy from stop token prediction combined. L2 regularization for the parameters with a weight of
10−6 is applied, and the L2 norm of the gradients are clipped at 1. Models are trained for 500 epochs
on LJSpeech and 250 epochs on VCTK, and selected based on the validation loss.

The time complexity of forward computation at the encoder is proportional to the unit-sequence
length because of the bi-directional LSTM layer in the encoder. On the other hand, the number of the
decoding steps is proportional to the duration of the speech at the decoder, which is independent of
the choice of input representation; however, at each decoding step, the number of encoder outputs the
attention module attends to is proportional to length of the unit sequence. Empirically, each training
epoch on LJSpeech takes about 12 minutes using two NVIDIA Titan X Pascal GPUs for both VQ2
and VQ3 models despite that VQ2 sequences are in average twice as long as VQ3 sequences, which
shows that time complexity are dominated by other computations.

C.3 Speech-to-Unit Model

We obtain the ResDAVEnet-VQ “{2}→ {2, 3}” model and the WaveNet-VQ (PA) model reported
in [6] from the authors. Both models learn discrete representations for speech and are used to
transcribe speech into a sequence of units in this paper. We use these models to extract unit sequences
for all datasets without fine-tuning, which examines the robustness of these Speech-to-Unit models
when applied to datasets of different domains. Table A3 compares the three types of units used in this
paper (VQ3, VQ2, WVQ) extracted from these two models. For self-containedness, the ABX error
rate for each unit reported in [6] are also included. The ABX test evaluates the phone discriminability
of the learned units on the ZeroSpeech 2019 English test set [3]. Note that (1) VQ3 and WVQ have
the same unit rate before run-length encoding, (2) VQ2 achieves the lowest ABX error rate, (3) and
all units have a lower ABX error rate before run-length encoding.

D Image-to-Unit Samples

Table A4 and A5 display unit captions for the same image generated from Image-to-Unit models
trained on different learned units. Captions in Table A4 are decoded with beam search (beam size=5),
and those in Table A5 are sampled from the model distribution with top-k sampling (k = 5).

4https://github.com/NVIDIA/tacotron2
5https://github.com/NVIDIA/waveglow
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Table A3: Properties of the three types of units and the two speech-to-unit models.

VQ3 VQ2 WVQ

Source Model ResDAVEnet-VQ ResDAVEnet-VQ WaveNet-VQ
Training Data Places Audio+Image Places Audio+Image Places Audio
Training Objective Contrastive Loss Contrastive Loss Reconstruction Loss
RLE ABX Error Rate 15.68% 13.06% 25.23%
Pre-RLE ABX Error Rate 14.52% 12.51% 24.87%
Pre-RLE Unit Rate 40ms 20ms 40ms

Table A4 shows that Image-to-Unit models trained on WVQ and VQ3 units without run-length
encoding (VQ3 \ RLE) fail to produce reasonable captions using beam search for all images. In
fact, generated captions are almost always the same among different images for these two models.
The WVQ model generates captions looping the same bi-gram until exceeding the maximum length,
while the VQ3 \ RLE repeats the same unit. On the other hand, the model trained on VQ2 units can
sometimes produce reasonable captions, but it exhibit the same behavior as the WVQ model when it
fails as shown here.

On the contrary, Table A5 shows that all four models are capable of generating non-trivial captions
without looping via sampling.6 The observation here is consistent with the evaluation results on the
transcribed spoken captions presented in Table A7 and A8 and Figure A3.

Table A4: Exemplar beam search decoding results from SAT Image-to-Unit models.

Symbol Captioned Generated with Beam Search (beam size=5)

VQ3 263 32 208 5 336 100 717 803 256 803 815 144 120 144 654 936 48 417 272 417 362 766
825 284 614 156 341 135 769 5 208 32 208 5 336 815 144 815 494 181 467 417 870 395
683 141 250 543 820 587 181 913 1013 467 5 208 32 208 5 467 360 606 360 801 1009 398
847 89 100 869 254 1003 442 42 791 417 272 141 766 362 614 156 341 135 769 5 208 32

VQ2 71 791 71 791 71 791 71 791 71 791 71 791 71 791 71 791 71 791 71 791 71 791 71 791 71
791 71 791 71 791 71 791 71 791...

WVQ 181 232 181 232 181 232 181 232 181 232 181 232 181 232 181 232 181 232 181 232 181
232 181 232 181 232 181 232 181 232...

VQ3 \ RLE 263 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
32 32 32 32 32 32 32 32 32 32 32 32...

6The model might still generate trivial captions when sampling with a temperature close to zero or setting a
very small k with top-k sampling, in which case sampling is similar to greedy decoding.
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Table A5: Exemplar sampling results with (t, k) = (1.0, 5) from SAT Image-to-Unit models.

Symbol Captioned Generated with top-k sampling (k = 5)

VQ3 263 208 467 717 288 426 986 72 44 341 151 801 1022 27 320 426 288 66 570 683 351 313
910 820 543 820 230 100 852 329 852 288 502 706 427 110 451 297 938 457 426 100 852
329 852 791 993 522 993 374 502 288 936 48 263 208 32

VQ2 71 791 71 791 71 791 71 191 175 51 139 359 173 599 307 419 133 621 85 165 315 883 175
191 71 791 71 48 511 765 983 873 314 409 333 267 409 734 229 787 184 937 886 254 934
666 973 19 947 227 805 967 883 175 48 695 511 655 806 491 647 507 343 867 819 655
699 491 136 221 513 996 675 581 467 652 488 186 3 183 311 613 371 463 314 21 238 910
238 657 230 82 270 868 643 78 391 940 922 49 771 986 147 947 19 957 862 957 95 7 819
695 1011 159 831 589 966 827 753 891 162 253 269 219 13 501 977 302 241 157 691 723
695 175 191 71 791 71 791 71 791 71 48 1007

WVQ 181 232 181 232 181 232 181 232 181 232 181 225 124 232 181 232 225 232 181 225 124
225 232 181 252 169 211 147 89 67 156 155 189 110 53 246 225 89 52 21 5 216 155 225
25 47 41 223 225 181 166 57 185 82 25 225 124 149 214 93 28 195 65 1 23 109 246 223
141 47 41 223 181 232 82 231 188 169 147 89 225 181 225 124 181 124 5 216 53 246 181
225 137 52 5 159 225 181 225 46 155 246 232 181 232 225 232 181 225 52 30 5 216 166
225 124 225 181 225 5 4 46 225 181 25 137 52 159 155 225 181 225 108 155 246 225 108
155 225 232 181 25 89 221 70 197 232 181 225 214 28 214 225 181 232 244 220

VQ3 \ RLE 263 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 208 208 5 5 336 100 803 256 560 417
870 870 870 968 910 250 543 820 587 909 909 181 717 48 936 48 224 176 284 538 133 807
715 39 27 27 476 5 5 476 570 395 395 683 313 141 250 250 587 587 494 909 922 181 100
100 827 119 66 272 417 766 766 766 614 614 156 341 135 135 181 913 913 1013 5 208 208
208 208 208 208 5 5 5 476 320 96 96 651 538 133 766 766 825 740 913 1013 467 5 208
208 32 32 32 32 208 208 5 5 336 501 254 254 254 254 1003 442 852 362 825 740 639 639
587 543 543 975 320 320 284 284 228 844 844 622 622 846 654 654 846 336 263 208 32
32 32 32 32 32 32 32 32 32 32 32 32 32
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E Caption Evaluation on Unit Sequences

The spoken caption evaluations presented in Section 3.2 utilized an automatic speech recognizer to
transcribe the generated captions into words so that they could be compared against reference text
captions. In the case that a speech recognizer is not available, we can perform evaluation directly on
the speech unit representations by using the unit model to transcribe the reference spoken captions.
Table A6 displays BLEU-4, METEOR, ROUGE, and CIDEr scores evaluated directly on the various
speech unit representations; we cannot compute SPICE scores directly on the speech units because
SPICE requires a dependency tree for each caption. It is important to note that for a given evaluation
metric, the scores across the models are not directly comparable because their unit spaces are different.
We do note that the relative ranking among VQ3, VQ2, and Wavenet-VQ is consistent across BLEU-4,
METEOR, and ROUGE, however, VQ3 \ RLE achieves abnormally high scores on these metrics
despite producing trivial captions for all images as shown in Table A4. This is because unit “32” has
learned to represent non-speech frames such as silence, which frequently occurs at both the beginning
and end of utterances. Without RLE, consecutive strings of “32” units are extremely common in both
the candidate and reference captions, which inflates the scores of this model. The exception here is
the CIDEr metric, which incorporates TF-IDF weighting that tends to de-emphasize these kinds of
uninformative patterns. The fact that the CIDEr score is 0 for both the VQ3 \ RLE and Wavenet-VQ
models indicates that in general the captions produced by these models are uninformative. We posit
that word-level evaluation is always preferable for spoken caption generation, but in the case that this
is not possible the CIDEr metric may be the best option.

Table A6: Unit-based caption evaluation on MSCOCO test set. The beam size ∈ {3, 5, 10} was
chosen for each model to maximize the CIDEr score. Note that the scores between different units are
not directly comparable, because they are computed based different types of units.

symbol Greedy / Beam-Search (SAT Model)
Unit BLEU-4 Unit METEOR Unit ROUGE Unit CIDER

VQ3 0.176 / 0.274 0.178 / 0.196 0.280 / 0.328 0.121 / 0.215
VQ2 0.172 / 0.141 0.132 / 0.108 0.178 / 0.157 0.027 / 0.020
WVQ 0.019 / 0.020 0.048 / 0.048 0.081 / 0.081 0.000 / 0.000

VQ3 \ RLE 0.163 / 0.163 0.168 / 0.168 0.218 / 0.218 0.000 / 0.000
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F Full Results of Caption Evaluation on Word Sequences

Table A7 and A8 and Figure A3 present the complete caption evaluation results on transcribed word
sequences for all 5 metrics, supplementing Figure 3 in the main paper that only presents the SPICE
results. Note that the transcripts for WVQ and VQ3 \ RLE beam search captions are not reliable;
for the reasons discussed in the previous section the generated spoken captions contain only silence,
and the ASR model used for transcription did not see utterances comprised of pure silence during
training. We see that ranking between symbols are generally consistent among all those metrics,
except the ranking between WVQ and VQ3 \ RLE when sampling with a temperature of 0.4. This is
a relatively low-score regime when both model are transiting from generating trivial caption (t = 0.1)
to non-trivial captions (t = 0.7).

Table A7: Word-based caption evaluation on MSCOCO test set. An ASR model is used to transcribe
the spoken captions into text for evaluation. The beam size ∈ {3, 5, 10} was chosen for each model
to maximize the SPICE score.

symbol Greedy / Beam-Search (SAT Model)
BLEU-4 METEOR ROUGE CIDEr SPICE

word 0.287 / 0.315 0.247 / 0.253 0.524 / 0.533 0.939 / 0.984 0.180 / 0.185
char 0.238 / 0.289 0.230 / 0.239 0.495 / 0.512 0.783 / 0.879 0.164 / 0.172
VQ3 0.133 / 0.186 0.162 / 0.186 0.413 / 0.446 0.435 / 0.584 0.111 / 0.127
VQ2 0.068 / 0.073 0.138 / 0.126 0.343 / 0.345 0.262 / 0.224 0.084 / 0.065
WVQ 0.010 / 0.009 0.069 / 0.069 0.286 / 0.285 0.009 / 0.009 0.011 / 0.011

VQ3 \ RLE 0.000 / 0.000 0.002 / 0.002 0.001 / 0.001 0.000 / 0.000 0.001 / 0.001

Table A8: Sampling-based evaluations with SAT models trained on different units.

Metric symbol Sampling with Temperature Top-K Sampling (t = 1.0) Top-K Sampling (t = 0.7)
t = 1.0 t = 0.7 t = 0.4 t = 0.1 k = 10 k = 5 k = 3 k = 10 k = 5 k = 3

BLEU-4

VQ3 0.052 0.097 0.132 0.137 0.084 0.108 0.120 0.109 0.119 0.124
VQ2 0.039 0.058 0.068 0.066 0.059 0.068 0.069 0.064 0.070 0.071
WVQ 0.033 0.047 0.025 0.012 0.056 0.050 0.037 0.052 0.042 0.025

VQ3 \ RLE 0.049 0.075 0.035 0.000 0.070 0.087 0.092 0.082 0.094 0.093

METEOR

VQ3 0.124 0.151 0.168 0.165 0.147 0.160 0.166 0.159 0.165 0.168
VQ2 0.115 0.134 0.146 0.140 0.134 0.142 0.147 0.140 0.144 0.147
WVQ 0.096 0.106 0.078 0.069 0.112 0.104 0.088 0.105 0.094 0.080

VQ3 \ RLE 0.119 0.135 0.055 0.002 0.136 0.146 0.148 0.141 0.144 0.141

ROUGE-L

VQ3 0.303 0.358 0.403 0.416 0.346 0.371 0.386 0.373 0.386 0.397
VQ2 0.293 0.330 0.351 0.345 0.325 0.345 0.351 0.340 0.348 0.355
WVQ 0.270 0.297 0.287 0.287 0.312 0.309 0.292 0.309 0.295 0.276

VQ3 \ RLE 0.295 0.330 0.152 0.001 0.328 0.349 0.355 0.340 0.348 0.350

CIDEr

VQ3 0.195 0.345 0.461 0.451 0.312 0.383 0.424 0.395 0.431 0.444
VQ2 0.143 0.231 0.272 0.267 0.220 0.260 0.277 0.251 0.270 0.278
WVQ 0.095 0.150 0.044 0.009 0.180 0.145 0.082 0.154 0.116 0.055

VQ3 \ RLE 0.182 0.277 0.130 0.000 0.260 0.316 0.340 0.304 0.328 0.332

SPICE

VQ3 0.063 0.093 0.111 0.114 0.086 0.100 0.108 0.100 0.106 0.109
VQ2 0.052 0.074 0.086 0.087 0.073 0.082 0.085 0.079 0.084 0.087
WVQ 0.035 0.046 0.019 0.011 0.051 0.042 0.026 0.043 0.034 0.020

VQ3 \ RLE 0.060 0.078 0.034 0.001 0.077 0.087 0.091 0.083 0.088 0.086
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Figure A3: Word-based caption evaluation results of all five metrics on SAT models trained on
different units, using both beam search decoding and sampling for unit sequence generation.

9



G Comparison of Average SPICE and M-SPICE

Figures A4 and A5 display the M-SPICE scores and SPICE score distributions of different sampling
methods for the SAT and SAT-FT model trained on VQ3 units, respectively. The exact numbers are
shown in Tables A9, A11, A10, and A12. When performing sampling-based evaluation, there is
bound to be some stochasticity in the results. However, the SPICE score distributions (box plots over
10 trials) shown in the bottom row of Figures A4 and A5 are very narrow, which we attribute to the
fact that the COCO test set is large enough attenuate this stochasticity. The narrowness of the box
plots also suggests that taking the average SPICE score over multiple sampling runs does not reflect
the diversity of the captions the way that M-SPICE does.

Table A9: M-SPICE F1-scores of the VQ3 SAT
model with beam search decoding.

n =
Beam Size

1 3 5 8 10

1 0.111 0.125 0.127 0.126 0.125
2 - 0.127 0.130 0.129 0.128
3 - 0.129 0.131 0.131 0.130
5 - - 0.134 0.133 0.132
10 - - - - 0.135

Table A10: M-SPICE F1-scores of the VQ3 SAT-
FT model with beam search decoding.

n =
Beam Size

1 3 5 8 10

1 0.140 0.147 0.149 0.148 0.148
2 - 0.152 0.154 0.152 0.152
3 - 0.155 0.157 0.155 0.154
5 - - 0.161 0.159 0.158

10 - - - - 0.164

Table A11: M-SPICE F1-scores of the VQ3 SAT model with sampling. t denotes the temperature,
and k denotes the number of top units considered at each decoding step for top-K sampling.

n =
Sampling with Temperature Top-K Sampling (t = 1.0) Top-K Sampling (t = 0.4)

t = 1.0 t = 0.7 t = 0.4 t = 0.1 k = 10 k = 5 k = 3 k = 10 k = 5 k = 3

1 0.063 0.093 0.111 0.114 0.086 0.100 0.108 0.100 0.106 0.109
2 0.092 0.128 0.147 0.137 0.120 0.137 0.145 0.138 0.143 0.146
3 0.106 0.145 0.163 0.147 0.137 0.153 0.161 0.153 0.160 0.163
5 0.117 0.156 0.175 0.154 0.148 0.165 0.173 0.164 0.173 0.174

10 0.115 0.153 0.173 0.155 0.145 0.160 0.169 0.162 0.169 0.171

Table A12: M-SPICE F1-scores of the VQ3 SAT-FT model with sampling.

n =
Sampling with Temperature Top-K Sampling (t = 1.0) Top-K Sampling (t = 0.4)

t = 1.0 t = 0.7 t = 0.4 t = 0.1 k = 10 k = 5 k = 3 k = 10 k = 5 k = 3

1 0.076 0.113 0.136 0.140 0.109 0.122 0.131 0.137 0.137 0.141
2 0.108 0.153 0.177 0.168 0.146 0.164 0.173 0.178 0.179 0.180
3 0.123 0.171 0.195 0.180 0.163 0.182 0.192 0.196 0.197 0.199
5 0.134 0.184 0.208 0.190 0.174 0.194 0.204 0.210 0.211 0.211

10 0.130 0.180 0.207 0.193 0.170 0.189 0.200 0.208 0.209 0.210

10



Figure A4: M-SPICE F1-scores and recalls (top) and SPICE distributions (bottom) of the SAT model
on the MSCOCO test set with different caption generation methods. Box-and-whisker plots the
SPICE scores over 10 runs are shown, where a box extends from the first quartile to the third quartile.

Figure A5: M-SPICE F1-scores and recalls (top) and SPICE distributions (bottom) of the SAT-FT
model on the MSCOCO test set with different caption generation methods.
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H Full Results of Learned Vocabulary Size

In Table A13, we display the numerical results depicted graphically in Figure 4.

Table A13: The vocabulary size of the VQ3 SAT-FT model as estimated by various decoding
approaches. The numbers in this table display the specific values of the curves depicted in Figure 4.

n
Beam Search Sampling (t: temperature; k: top-k)
beam size=? (t, k) = (?, All) (t, k) = (1.0, ?) (t, k) = (0.7, ?)

1 3 5 8 10 1.0 0.7 0.4 0.1 10 5 3 10 5 3

1 551 479 447 421 411 1447 978 689 561 1058 908 770 694 663 670
2 - 572 523 502 474 2100 1367 917 696 1522 1289 1025 907 867 851
3 - 693 620 585 562 2550 1644 1075 803 1855 1515 1222 1069 1003 973
5 - - 681 625 617 3239 2111 1305 938 2367 1861 1511 1266 1209 1155
10 - - - - 700 4311 2876 1664 1155 3176 2512 1954 1618 1552 1437

I Disentangled Voice Control for Image-to-Speech Synthesis

We examine to what extent the VQ3 units are portable across different speakers by training a U2S
model on the VCTK dataset that additionally takes a speaker ID as input. The resulting model is able
to generate speech with the voice of any VCTK speaker. We evaluate the captions produced by this
system on SpokenCOCO for 5 speakers in Table A14. In order to compute these scores we transcribe
the captions generated by each model into text using the ASR system we describe in Section ??,
which was solely trained on re-synthesized SpokenCOCO captions using the LJSpeech U2S model.
The scores in Table A14 indicate not only that the I2U model can be easily integrated with U2S
models representing a diverse set of speakers, but also that the LJSpeech ASR system works very
well on the speech synthesized from the VCTK models. In Figure ??, we show example captions
generated by conditioning on the same unit sequence, but different speaker identities.

Table A14: Demonstration of disentangled voice control via synthesizing the same units with different
unit-to-speech models conditioned on different speaker IDs. Units are generated with beam search
using the SAT-FT model for the MSCOCO test set.

Train Data Speaker ID Gender Region BLEU-4 METEOR ROUGE CIDER SPICE

LJSpeech - F - 0.233 0.212 0.478 0.732 0.149

VCTK

p247 M Scottish 0.234 0.211 0.480 0.730 0.148
p231 F English 0.233 0.210 0.478 0.724 0.146
p294 F American 0.236 0.212 0.482 0.732 0.148
p345 M American 0.234 0.209 0.477 0.717 0.144
p307 F Canadian 0.234 0.211 0.479 0.729 0.148

J More Image-to-Speech Samples

In Tables A15 and A16, we show many more examples of spoken captions generated by the VQ3
model. In Table A15, all three captions in each row were generated from the same unit sequence
corresponding to the top hypothesis from beam search decoding. Each column represents the
caption waveform generated by a different U2S model reflecting a different speaker. Although the
spectrograms are visibly very different (reflecting the differing speaker characteristics across the U2S
models), the word sequence estimated by the ASR model is generally the same. We do notice some
substitution errors (highlighted in red), most commonly between “a” and “the”.

Table A16 shows captions generated by the same VQ3 model and for the same set of images depicted
in Table A15, but instead of varying the U2S model we show captions generated via sampling rather
than beam search. Here, we note that the sampled captions exhibit diversity both their content and
linguistic style. We observe that the captioning model has learned to produce captions that correctly
use quantifiers and conjugate verbs (“a couple of cows walking” vs. “a cow is standing”). The model
also disentangles object identity from attributes such as color “red fire hydrant” vs. “yellow fire
hydrant” vs. “green fire hydrant”).
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Table A15: Samples. More at https://xyn7a5e0vs.github.io/image-to-speech/3_vq3_
voice_control_sat-ft_model

Image Generated Spoken Captions / Transcripts (SAT-FT, VQ3, Beam Search)
LJSpeech VCTK (p247) VCTK (p307)

a small airplane sitting on
the grass

a small airplane sitting on
the grass

a small airplane sitting on
the grass

a man riding a wave on a
surfboard

a man riding a wave on a
surfboard

a man riding a wave on a
surfboard

a large red bus on the side
of the road

a large red bus on the side
of the road

a large red bus on the side
of a road

a couple of cows standing
in the grass

a couple of cows standing
in the grass

a couple of cows standing
in the grass

a cow walking down the
street with a store

a cow walking down the
street in a store

a cow walking down the
street next to a store

a red fire hydrant sitting
on the side of a street

a red fire hydrant sitting
on the side of a street

a red fire hydrant sitting
on the side of a street

a yellow fire hydrant
sitting on the side of a

road

a yellow fire hydrant
sitting on the side of the

road

a yellow fire hydrant
sitting on the side of a

road

a green fire hydrant sitting
on a sidewalk

a green fire hydrant sitting
on the sidewalk

a green fire hydrant sitting
on a sidewalk
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Table A16: Samples. More at https://xyn7a5e0vs.github.io/image-to-speech/2_vq3_
sample_diversity_sat-ft_model

Image Generated Spoken Captions / Transcripts (SAT-FT, VQ3, Sampling (t, k) = (0.4, 3))
trial 1 trial 2 trial 3

the airplane is parked on
the field

a plane is parked in the
grass near a white and

white airplane

a small airplane that is
standing in a field

a surfer riding a wave in
the water

the man is riding the wave
in the water

a surfer is riding a wave
on a wave

the bus parked on the side
of the road

a large red bus is stopped
in the road

a bus is parked on the road

a couple of cows walking
in a field

a couple of cows in a
grassy field

a couple of cows walking
in a grassy field

a cow is standing in a
store

a brown cow walking
down the side of a street

a brown and white cow
standing in a line

a red fire hydrant is sitting
on the side of the street

a red fire hydrant sitting
on a sidewalk in a

concrete

a red fire hydrant sitting
on the side of a road

a yellow fire hydrant in
the middle of the side of a

road

a yellow fire hydrant is
sitting in the park

a yellow fire hydrant in a
line on the side of a street

a fire hydrant on a
sidewalk in the middle

a green fire hydrant on the
side of the road

a fire hydrant with a curb
on the side of the street
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